Trendaavat aiheet
#
Bonk Eco continues to show strength amid $USELESS rally
#
Pump.fun to raise $1B token sale, traders speculating on airdrop
#
Boop.Fun leading the way with a new launchpad on Solana.
GLiClass-V3: A family of encoder-only models that match or exceed DeBERTa-v3-Large in zero-shot accuracy, while delivering up to 50× faster inference.
Core Design:
- Single-pass inference: No cross-encoder pairing needed. One forward pass handles all labels.
- LoRA adapters: Fine-tuned on logic tasks (e.g., Formal Logic Reasoning, Commonsense QA) for symbolic generalization without catastrophic forgetting.
- Edge-ready: gliclass-edge-v3.0 hits 97 ex/s on A6000, ideal for mobile and IoT
GLiClass-V3 variants (gliclass-*):
(Built on DeBERTa, ModernBERT, and Ettin for edge deployment)
- large-v3.0: 70.0% avg F1 (best)
- base-v3.0: 65.6%
- modern-large: 60.8%
- edge-v3.0: 48.7% (fastest, Ettin-based)
- x-base: 57% F1 (EN), 42% (multilingual) for robust multilingual zero-shot generalization
Benchmarks (zero-shot, no fine-tuning):
- CR, SST2, IMDb: ~0.93–0.94 F1
- Outperforms GLiClass-v2 and cross-encoders (e.g., DeBERTa-v3-Large, RoBERTa)
- Scales to 128+ labels with massive speedup (DeBERTa-Large: 0.25 ex/s vs GLiClass: 82.6)
Use cases:
- Multi-label classification (e.g., topic, sentiment, spam)
- RAG reranking
- Privacy-safe on-device NLP
Built on DeBERTa and ModernBERT. Fully open-source.
pip install gliclass


3,33K
Johtavat
Rankkaus
Suosikit